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Two approaches to constructing piecewise rational curves are compared and
contrasted. One involves projecting a piecewise polynomial curve whose polynomial
segments are joined according to given totally positive connection matrices.
The other, which is discussed in more detail, constructs the Bezier points of the
rational segments by successively cutting corners of a given control polygon.
The smoothness and total positivity properties of the resulting curves are also
discussed. 'L> 1993 Academic Press. Inc.

1. INTRODUCTION

Two of the many seminal ideas which 1. J. Schoenberg introduced were
the B-spline basis for spline functions [18] and the variation diminishing
properties for shape preserving approximation [19]. These ideas have
blossomed with subsequent work by Schoenberg and many other authors
and have important applications which include the construction of a
parametric piecewise polynomial (or more generally piecewise rational)
curve whose shape can be determined and manipulated by a sequence of
control points.

In this paper we compare two approaches to the construction of such
curves. What we call the "analytic approach" was developed latterly by
Dyn and Micchelli in [5] in which the curve segments are joined by
matching their derivatives by totally positive connection matrices. The
other approach, which we call the "geometric approach," derives the points
of the curves by successively cutting corners of a given polygonal arc. This
approach owes its latest developments to the author [13, 14].

In Section 2 we consider the relatively simple case of piecewise cubic
polynomials and this is extended to piecewise cubic rationals in Section 3.
By concentrating on these cases it is hoped that the essential points of the
general case can be illustrated without being obscured by the extra
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complexity of higher degree. Both approaches are discussed in more
generality in Section 4. In Section 5 we consider the restriction required on
the parameters in the geometric approach to ensure continuity of certain
geometric properties of the curve, and discuss possible choices of
parameters and their effect on the shape of the curve.

Although this paper is intended primarily as a survey and elucidation of
results already known, all of Sections 2 to 5 contain material which has
not appeared before and which it is hoped will prove useful both for
understanding and applying the geometric approach. We finish by drawing
some conclusions in Section 6.

2. PIECEWISE CUBICS

In this section we consider the construction of a continuous piecewise
cubic polynomial S: IR -+ R" s ~ 2. We are particularly interested in curves
which look smooth. Following ideas first introduced in [16J, we define the
curve S to be geometrically continuous of order 2 (G 2

) if it has continuous
unit tangent and continuous curvature at all points where S' is non-zero.
If S' is zero at a point, then the curve may have a cusp there, but we do
not consider here conditions for ensuring S' is non-zero. We compare and
contrast two approaches which we refer to as "analytic" and "geometric."

The Analytic Approach

By reparametrizing, if necessary, we can assume that the curve S has
knots at the integer Z, i.e., for each i in Z, S I[i, i + 1J is a cubic polyno­
mial. Then S is clearly G2 for all t rf: Z. For S to be G2 at i in Z it can be
shown to be necessary and sufficient that

(2.1 )

where for some f3 ,> 0 and some " i'

(2.2)

The matrix A i in (2.1) is called a connection matrix since it determines
how the polynomial pieces of the curve connect together at t = i. If }'i ~ 0
for all i in Z, it has been shown that S can be written uniquely in the form

S(t) =. L P' Ni(t),
1= --,x.'

(2.3 )

where pi E IR' and N i : IR -+ IR has support on [i, i + 4J with I: x x N, = I.
Moreover it can be shown that for any strictly increasing sequence (t,), the
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matrix (Nj(t;) ),.jEl' is totally positive, i.e., has all minors non-negative. This
ensures that in some senses the shape of the curve S reflects the shape of
the polygonal arc joining consecutive points pi; see [12 J for a discussion.
For this reason the points pi can be used to control the shape of the curve
S and are therefore referred to as control points, and the polygonal arc
joining them as the control polygon. It has been shown further that given
any jl <j2 < ... <j"" any m ~ 1, then

In particular we see that

N,(t) > °~ i < t < i + 4.

i = I, ... ,1/1. (2.4)

(2.5 )

Thus any minor of (N;ftJ)i.}E 7 is strictly positive if and only if its
diagonal elements are non-zero and for arbitrary points Q l' ... , Q", in [R',

there is a unique curve S = L:7'= 1 pi Nil satisfying the interpolation
conditions

if and only if

S(t,)=Qi' i= 1, ... , In,

i= I, ..., m.

In fact all of these above properties continue to hold if the connection
matrix A i has the form

[
Pi OJ

A,= '/1 6
i

'
(2.6 )

where PI> 0, bI> 0, 1'1 ~ 0, though in this case, of course, S will not in
general be G2

.

For a brief history, we remark that for (2.2) with }'I=O, the above theory
reduces to the classical theory of B-splines, initiated by Schoenberg and
developed by him, de Boor, and others, see [4]. In [2J Barsky considered
the case (2.2) when Pi' i'i are independent of i and the general case (2.6)
was studied by the author in [11 J, where an explicit formula was given
for N i .

For the case of B-splines, the theory can be elegantly developed by using
polar forms, see Ramshaw [17]. This approach has been extended to the
general case by Seidel [20J and we describe this briefly here as it has some
bearing on the geometric approach to be considered shortly. Take
u < v < 11', either in an interval [i, i + 1J or in an interval [i - I, i + 1J with
v = i. We denote by f(u, v, 11') the intersection of the osculating planes to
the curve S at the points S(u), S(v) and S(w). To ensure this is well-defined
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we must assume that S is "non-singular" in some sense, but any "singular"
curve can be gained as a projection of a non-singular one. Similarly
f(u, u, v) denotes the intersection of the tangent line at S(u) with the
osculating plane at S(v), whilef(u, u, u)=S(u). Then it can be seen that
the control point pi equals f(i + 1, i + 2, i + 3). In general the function f,
the polar form of S, is a piecewise rational function in each of its variables,
but in the special case of B-splines, f is affine in each variable.

The Geometric Approach

In order to describe the geometric construction of a piecewise cubic
polynomial curve, we must first describe the geometric construction of a
single cubic polynomial segment in IR'. By reparametrizing, if necessary, we
may assume it is of the form

O~t~l, (2.7)

for points bo, ..., b, in IR' called Bezier points. For each t, 0 ~ t ~ 1, we can
clearly construct p(t) as illustrated in Fig. 1 where, as elsewhere, numbers
against line segments denote ratios.

Thus to construct a piecewise cubic polynomial curve, we construct the
Bezier points b~, ..., b~ for the ith segment Pi' each iE 7L. We now give such
a geometric construction which ensures that the curve is G2

• This is
essentially due to Farin [6J, though he described it somewhat differently.
We start with arbitrary points pi E IR' and numbers f3 i, )./' J1.i > 0, i E 7L, with

(2.8 )

bo

FIG. I. Evaluating a cubic polynomial.
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We then construct Bezier points b~, ..., b;, i E 7l., as illustrated in Fig. 2. The
whole curve S: IR -> W can then be given by

i~t~i+l, iE71.. (2.9)

Since S(t), i ~ t ~ i + 1, is a convex combination of pi- 3, ... , pi, we have

x

S(t)= L piNi(t),
i= -co

(2.3 )

where N j : IR -+ IR is positive with the support on [i, i + 4] and I,: x N j = 1.
Moreover we shall see more generally in Section 4 that all the total
positivity properties of the analytic approach hold also in this case. Indeed
they hold for any Pi' Ai' J1.i > 0, regardless of (2.8), though without (2.8) the
curve will not in general be G2

•

What, then, is the precise relationship between the two approaches? We
shall see this by calculating the connection matrix A i for (2.3) in terms of
Pi' ;'j, and Ilj' Recalling (2.7), (2.9) we have for j=O, 1,2,

Slil(i-) =p~~ 1(1 -) =j! Lljb~-I,

SLil(i+) = P:))(O+) = j! Ll)b;,

pi-2

;3,

(2.10)

pi-3

b'I

b'2

p'-l

FIG. 2. Constructing a piecewise cubic polynomial.
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where A is the backward difference

Aa,=a,-a, I'

From the geometric construction a straightforward calculation gives

Ab', = fi, Ab~ I,

A2b~ = I.dl , A2b~ 1 + (II, + fJ,ll, - 1.,11, - f3,) Ab~ 1

Combining (2.10) and (2.11) gives

(S'(i+), S"(i+ ))T = Ai + 2(S'(i ), S"(i- W,

where

Th us A; can be any matrix of the form

A i = [~; ~J

(2.11 )

for fJi>O, £5 i >O, and i'i> -2(fJ;+£5;)·
To ensure a G 2 curve we take £5;=/37 and Vi> -2fJ;(1 +/3J Thus the

geometric construction is considerably more general than the analytic
approach, which requires }I;;:: O.

We shall say that the control vertices pi, i E Z, lie in general position if for
any i, pi, ... , pi + 3 do not lie in a common plane. In this case we adopt the
following labelling scheme which is crucial for generalization to higher
degree. We denote by i 3 the point S(i) = b~ 1= b(j' and by i 2 and i
respectively the tangent line and osculating plane to S at this point. Other
labels of consecutive integers denote the intersections of their components;
e.g., 122 denotes the point of intersection of the line 12 and the plane 2. In
Fig. 3 we use this scheme to label the points and lines of Fig. 2, with i = 2.

This labelling scheme is closely related to the polar form for the analytic
approach. Indeed we describe briefly how the polar form can be defined for
the geometric approach. Take t, i < t < i + I, and denote by t 3

, t2
, t

respectively the point S(t) and the tangent line and osculating plane at this
point. As before we define labels (i - I) it, it(i + 1), and t(i + I )(i + 2) as
intersections. Then it is easily seen that they are points and that the vertices
... pi 3, (i -1) it, it(i + 1), t(i + l)(i + 2), pi, are in general position. From
these new vertices we can construct the curve S as before, but now the
polynomial segment p; is split into two segments, one on [i, t] and one on
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123

75

122 23
22 3

22

.....'" ~O'
122 23 2

12

012 33

234

32

324

~ ~

FIG. 3. Labelling for a piecewise cubic polynomial.

[t, i + 1]. This allows us to define points with labels i2t, t(i + 1)2, it 2 and
t 2(i + 1). By repeating this procedure we can successively introduce any
new values of the parameter. So we can define f(u, v, w) = uvw,
f( u, u, v) = u 2v, etc., to give a polar form as in the analytic approach.

3. PIECEWISE CUBIC RATIONALS

The use of piecewise rational curves otTers the significant advantages over
piecewise polynomials of extra flexibility and invariance under projection
(as we describe below). Moreover, we shaH see that the theory for rationals
is almost as simple as that for polynomials. Indeed, the construction of
piecewise rationals in projective space is in a sense the natural setting
for the geometric approach, though we only mention this brieOy. In
considering piecewise rationals, the analytic and geometric approaches
diverge further.

The Analytic Approach

Consider a continuous piecewise cubic polynomial curve S: IR-.
IW + 1 S ~ 2, given by

(3.1 )
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for pi E 1R', Wi> 0, i E Z, and with connection matrices given by (2.6). If
P: IR' + I --> IR' denotes the projection

(
Xl X.I )P(X 1 , ... ,Xs + 1)= --, ...,-- ,

X.I + I X.1 + I

we can define a piecewise cubic rational curve PS: IR --> IR·I by

(3.2 )

(3.3 )

A straightforward calculation shows that at i, PS has connection matrix

where

[Pi OJB;= ,
v; (j i

(3.4 )

oc

W= I U'iNi'
1= -0:;-

(3.5 )

Thus B; is independant of the weights W; if and only if (j; = P~, which we
recall from Section 2 ensures that S is G 2

• This is also the condition for S
and PS to have the same connection matrix. These properties are
considered more generally in [9, 10].

We may rewrite (3.3) as

PS(t) = I piNi(t),
;= -x

Then Lr== -x Ni = 1 and

~ w;N iN=--I •

IV (3.6 )

So the total positivity properties of the basis functions N i immediately
imply corresponding properties for the functions Ni . We remark that the
connection condition (2.1) for S can be relaxed to allow dependence also
on Sri), while still retaining all the above properties for PS.

The Geometric Approach

We first describe the geometric construction of a single cubic rational
segment in IRS. The segment is determined by Bezier points bo, ... , b, in IR'
and for i = 0, 1, 2, by an auxiliary point QI lying strictly within the line
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segment joining b i to b;+ I' For collinear points A, B, C, D we use the
notation [A, B, C] for the ratio in which B divides the segment AC and
use the notation (A, B, C, D) for the cross-ratio [A, C, B] [B, D, A].

Take 0<1<1. For i=O, 1,2, we define bjll on the line segment b;bi + i

so that

(3.7 )

For i = 0, 1, we define b~21 to be the intersection of the line b~ II b~ ~ I with
the line joining b;+ 1 to the point of intersection of the lines bibj~ I and
b~1)bi+2' see Fig. 4. Finally we define r(t) as the intersection of b62lb\21 with
the line joining b\l l to the point of intersection of b~llb\21 and b~2lbil I.

If we write

i = 0, 1,2, (3.8 )

for positive weights wo, ..., ll'J, then it can be shown that

(
bowo(1 - 1)3 + bl w l 3t(1 - t)2 + b2~1'23t2(1 - t) + b3 w3t 3

r t) = -'C--"--'_--'---:~---="--'-_--'-.,,-----=---=';---'--_--'-~-"::'_,

wo(1- t)3 + w l 3t(1 - t)2 + w 23t2( 1- t) + W3 t3 '

O<t<1. (3.9)

bl l
)b

l
...,..- ....,..- --= b

2

I

-',,
I

I

I
I

/

-
~ \

/
/

/
/

FIG. 4. Recursive evaluation for a rational cubic.
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The above construction appears in [14] and is a modification of a
construction due to Farin [7]. It is clear that the construction is projective
invariant; i.e., if P is a projection from IR' to 1R 1

, I ~ s, then the curve Pr has
Bezier points Pbo, .., Pb} and auxiliary points PQo, ... , PQ2' The
construction thus makes sense in projective space and the theory in [14]
is largely developed in this setting. However, in this paper we are interested
in affine representations of the form (2.3), the total positivity properties
of the basis functions N i and the connection with the analytic approach,
and so we consider only curves in IRs.

We note that by scaling top and bottom of (3.9) and making a
linear/linear change of parameter, the curve r depends, for given bo, ..., b},
only on I1'O H'2/11'; and 1I'111'}/11'3. So we could, for example, assume
11'0 = 11'.1 = I.

A piecewise rational curve can now be formed from a sequence of control
points pt by constructing Bezier points of successive segments in precisely
the manner of the geometric approach of Section 2. The only difference is
that to obtain G2 continuity the equation (2.8) must be replaced by

(3.10)

where 11'~, ... , Il'~ denote the weights for the segment with Bezier point
b~, ... , b~. Again the resulting curve has the form (2.3), where N i : IR -+ IR
has support on [i, i + 4] with L' f N, = I and all the total positiveness
properties are preserved.

To conclude this section we make some comparisons between the two
approaches for constructing piecewise rational curves. The analytic
approach uses basis functions N i which are piecewise polynomials and con­
structs curves of form (3.3). The geometric approach uses basis functions
N i which are piecewise rationals and constructs curves of form (2.3). Both
construct an affine theory by fixing the denominator independent of the
control points pi. However in the analytic approach, the denominator
depends on one weight Wi per segment, while in the geometric approach it
depends on two weights 11'/1' 11'~ per segment (putting 11'~) = 11"1 = I), and
hence the geometric approach provides more flexibility.

4. THE GENERAL CASE

Having dealt in some detail with the construction of continuous
piecewise cubic rational curves we briefly describe how this extends to
arbitrary degree n, n ~ I. As before we may assume knots at J' and so the



CONSTRUCTING PIECEWISE RATIONAL CURVES 79

curve is of form S: IR -+ IRs, s;;?; 2, where S I [i, i + I] is a rational function
with top and bottom of degree n. We assume that for each i Ell,

for some connection matrix A; which is lower triangular and non-singular.
We postpone until later a discussion of the relationship between Ai and
continuity of geometric properties of the curve S at i.

The Analytic Approach

First consider the case where S I [i, i + 1] is a polynomial of degree n for
each i E lL. If each A; is diagonal with entries (A ;))j = P~, j = I, ... , n - I, some
PI> 0, the construction of S reduces to the classical theory of constructing
spline functions in terms of B-splines, see [4]. For A; positive and one­
banded, i.e., (A;)jk=O unlessj=k or k+ I, the theory was given in [II].
This was extended to general totally positive matrices (lower triangular
and non-singular) in [5]. For this case we can express S in the form

ce

S(t) = L PjNj(t),
i= -c£.'

(2.3 )

where P'EIR' and N j: IR-+IR is positive with Nj(t»O if and only if
i<t<i+n+l, and L:·~ceNi=l. As for the case n=3, for any strictly
increasing sequence (t;) the matrix (Nj(t;) )i.jE z is totally positive and any
minor is strictly positive if and only if its diagonal elements are non-zero.

The rational case is dealt with as for n = 3 by considering S: IR -+ IR'+ 1

of form (3.1) for connection matrices A i and then defining a piecewise
rational curve PS: IR -+ IR' by (3.3). This can then be written in the form
(3.6) and all the total positivity properties go over to the basis functions
IV;. The relationship between the connection matrices Al for S and the
connection matrices for PS is discussed in [9, 10].

The Geometric Approach

For a single rational segment we can extend (3.9) in an obvious way as

o~ t ~ I,

for Bezier points b j E IR' and weights Wi> O. As for the cubic case there is

640,'72/1-6



80 T.N.T.GOODMAN

no loss of generality In assuming Wo = w,. = 1. Defining auxiliary points
Qo, ..., Q/I_I by

w,+ 1
[b" Q" b,+ I] =--,

~Vi

the segment is represented in a projective invariant manner by the Bezier
points and auxiliary points. The geometric construction of r(1), 0 < t < 1,
from these points extends that of the cubic case in an obvious way, see
[14], and we do not describe it again.

The geometric construction of piecewise rational cubics was extended to
the quartic case by Boehm [3]. This was simplified and extended to
general degree by the author [13]. As in the cubic case, we start with a
sequence of control points pi, i E 7L, and recursively construct new points
until we reach the Bezier points b~, ..., b~ for the ith segment, i E 7L. The
form of this construction is the same for piecewise rationals as for piecewise
polynomials.

A precise description of the construction in the general case requires a
generalization of the labelling scheme for the case n = 3 described in
Section 2. However this description is somewhat involved and we shall not
give it here, it being described in [13, 14]. Here we remark that each step
in the construction is of one of the following three types.

Type 1. Given two points A and B, we insert a new point P on the line
segment A B so that [A, P, B] = A. --I for some parameter A. > O.

Type 2. Given two points A and B, we insert points P and Q on the
line segment AB so that [A, P, Q] = A. - I, [P, Q, B] = 11- 1

, for parameters
A. > 0, 11 > O.

Type 3. Given points A, B, C, we insert points P and Q on the
segments AB and BC respectively, so that [A, P, B] = A. -I, [B, Q, C] =
11- 1 for some parameters ), > 0, 11 > O. We then define R to be in the
intersection of the line segments AQ and Pc.

FIG. 5. Schematic representation of corner cutting.
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pO

,I"

b1----b~

,I"

b'o

pI

FIG. 6. Geometric construction for n = 3.

Starting with the control points pi:::: pil,O' we construct points p~",

k = 2, "" n, j = 0, "., k - 1, recursively on k to finally gain the Bezier points

b i pi . ° 1 b i b i + 1j == lI.j'} = , ... , n - , n == 0 .

For each k, the points P~,j' iE7L,j::::O, "., k-l, can be thought of as
control points for a curve with knots of multiplicity k; i.e., the rational

p-z

bj---

p-I

---b;

pO

FIG. 7. Geometric construction for n = 5.
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segments JOIn with a linear relationship between their derivatives up to
order n - k. To get from the points P;.i' i E 7L,j = 0, ..., k - 1, to the points
P~+l.j,iE7L,j=O, ...,k, requires n-k parameters per segment: A:I~k.j'

j= 1, ..., n-k.
We illustrate schematically the constructions for n = 3, 5, and 7 in

Figs. 6, 7, and 8 respectively, where we represent constructions of types 1
and 2 as in Fig. 5. To avoid congestion we label only the parameters A~ _k,J

and omit the superscript 2. Of course the case n = 3 was described
geometrically in Section 2. We ignore the cases n = 4 and 6 partly because

p-3 p-2 p-I

FIG. 8. Geometric construction for n = 7.
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this avoids using constructions of type 3 and partly because curves of odd
degree allow more helpful manipulation of shape by the parameters. The
schematic illustrations are sufficient to allow practical implementation of
the constructions.

As for the cubic case we can give the resulting curve a global
parametrization S: IR ~ IRs so that S(t), i ~ t ~ i + 1, is a convex combina­
tion of pi - n, ... , pi and so can be expressed in the form (2.3), where
N,: ~ -> IR is positive with support on [i, i + n + 1] and L: C:.Yc N, = 1. We
shall now see that the same total positivity properties hold as for the
analytic approach.

Let b denote the vector (b~, ...,b~,b;+l, ...,b~+I, ...,b{, ...,Ir,Y for some
i ~j. In the geometric construction these Bezier points are derived from a
vector of control points P = (pk, pk + I, ... , pi)T for some k < I. Each step in
the geometric construction is equivalent to constructing a new vector of
points by applying a positive, one-banded matrix to the previously
constructed vector of points; see [12]. Since a product of one-banded,
positive matrices is totally positive, we see that b = AP, where A is totally
positive.

Given any sequence of parameter values t1< ... < t m , the vector
T= (S(td, ..., S(tm))T is gained from a sequence b of Bezier points in the
same manner as above and thus T= Bb for a totally positive matrix B. So
we have T= CP, where C= BA is totally positive. But from (2.3) we know
that C = (Nj(t;);"~ l~~k' Since the choice of parameter values t i was
arbitrary we know that for any strictly increasing sequence (t;) the matrix
M = (Nj(t,»,.jE J' is totally positive.

Moreover, which minors of a one-banded positive matrix are strictly
positive depends only on which entries are strictly positive. It thus follows
that which minors of M are strictly positive is independent of the values of
the parameters A5.k (assuming of course that they are strictly positive). But
appropriate choice of parameters gives us the B-spline case for which we
know that

det(M'.jk)~k~I = det(Njk(t;)~k~ 1 > 0<'> ij < t; < ij + n + I

and so this result holds in the general case also.

5. SMOOTHNESS

In Section 4 we did not consider the smoothness of the constructed curve
S. For n = 3 we considered a choice of matrices A, which ensured that S
was G 2

• The concept of G 2 continuity has been extended in two different
ways. We say S is geometrically continuous of order m (G m

) if whenever S'
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is non-zero, S is em with respect to arc length. The conditions on A i to
ensure Gm continuity are given, for example, in [8, II], but they are
somewhat involved and so to derive a simpler, more general theory we
consider the weaker condition that A i has diagonal elements (A Jjj = fl~,

j = I, ..., n - I, for some fl i > O. There is no restriction on the entries
(Ai)jk=O for }>k. (Recall that (Ai)jk=O for }<k.) In this case we say S
has Frenet frame continuity of order n - I, or is F n

- I. The reason for this
terminology is that it was shown by Dyn and Micchelli [5] that this
condition is equivalent to the continuity of the Frenet frame and associated
n - 2 curvatures (see also [15]), provided of course that the Frenet frame
is well-defined, i.e., S', ..., Sin - I) are linearly independent at the point. For
example, F J continuity is equivalent to G2 continuity plus continuity of the
torsion.

In [13] are given necessary and sufficient conditions on the parameters
).~, j' k = I, ..., n - I,} = I, ... , k for the curve S to be F n

- I continuous. They
are of the form

k = I, ..., n-I (5.1 )

where R~ is a simple rational function of certain parameters )';,j for 1< i(,
which equals I when k,,;; !(n + I). (Here we have assumed II'~+ 1= 11';, = 1.)
For example, the conditions for n = 5 have R i

l = R~ = R~ = I,

R i = (I + (A ~2 1 ) - I) (I + (A. ~2 1 ) 1 )

4 (I+).~71) (I+;'~~I)'
(5.2)

For the case of piecewise polynomials of arbitrary degree n, when all the
weights equal I, the condition (5.1) can be satisfied by taking the following
choices. We take fl, = 1 and for k,,;; n - 2 we assume )'~,J = Ak ,}, independent
of i, where

j= I, ...,k.

Under these assumptions, all the terms R~ equal 1 and (5.1) is auto­
matically satisfied for k = 1, ... , n - 2. The only remaining condition is

(5.3 )

Thus we have arbitrary global parameters )'k,j, k = I, ..., n - 2,1 ";;j";; !k,
and local parameters A.:, I, l' ... , ).~ _ I, n _ I' i E 71., subject only to the restric­
tion (5.3).

The parameters ).~,j can be used to manipulate the shape of the curve S
without altering the control points pi and the effect of altering the
parameters can sometimes be deduced from the form of the geometric
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construction. We illustrate this with the case of a piecewise quintic poly­
nomial curve. We assume Pj=)'~J=A~2=;'~2=;'~3=t,)'~I=()'~2)-L=a:,

;'~I=()'~3)-1=Yjand A~1=().~4)-I=<5i' for the parameters a:,y,,(};,iE7L
We see from (5.2) that R~ = t and hence that the conditions (5.1) for F 4

continuity are all satisfied.
Now letting the global parameters a: diverge to 00 makes b~~ 1 approach

b~- Land b'l approach b~ and thus the curvature at b~ approaches zero,
i E Z. In contrast, letting IX -> 0 causes b~- I and b~ to approach b~ and so
the curve will approach a sharp corner at b~, i E Z. Letting Yi -> 0 causes the
points b~- 1, b~- I, b~, b~ to approach collinearity and hence the curvature
at h~ to approach zero. If both Yi-> 00 and IX-> 00, then both the curvature
and torsion at b~ will approach zero. Decreasing (} i will have the effect of
pulling the curve near b~ towards the control vertex pi - 3 while if <5; -> 0
and }'i -> 0, then b~ will converge to pi - J and hence the curve will be pulled
into the corner of the control polygon at pi - J. If (j; -> 0 and }' / -> 0 for all
i, then the curve will approach the control polygon.

6. CONCLUSIONS

We have discussed a method of constructing piecewise rational curves by
successively cutting corners of a given control polygon until we reach the
Bezier points for the rational segments. This "geometric approach" has
been compared with the "analytic approach" of projecting a piecewise
polynomial curve whose pieces are joined by totally positive connection
matrices. The geometric approach has the advantage of being in some
senses more general and of giving very simple algorithms for evaluation
with parameters which may have clear geometric significance. However, the
analytic approach has an elegant theory which allows knots of varying
multiplicity and hence general knot insertion, as well as formulas for
representing polynomials [t]. It would be interesting to elucidate further
the connection between these two approaches; for example, to determine
an easily definable class of connection matrices allowed by the geometric
approach which is more general than that of totally positive matrices.
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